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Advantages of Topological Tools
in Localization Methods

Mohammed Khachan and Patrick Chenin

Abstract. Let C = {X E 1n / f (X) = 0a, n E {2, 3}, where f is a poly-
nomial function. We want to approximate C by subdividing the parameter
space. Most of the usual algorithms raise two problems: data structure
management, and the choice of subdivision level which respects the geom-
etry of C. This paper gives a method based on a topological approach.
In this work, we specify the local criteria that preserve the topological co-
herence between the model (the set C) and its volumetric approximation
(the set of voxels that contains C). In addition, we determine the local
criteria that give the digital analog of (n - 1) dimensional manifolds in
1n. In this way, we determine locally how the set of voxels in digital
space may be spread out to describe analogous properties of Euclidean
manifolds. This gives efficient criteria for controlling the distribution of
voxels and the depth of subdivision. We then obtain an approximation
that conserves the topological properties of C. The process of localization
based on these criteria is generated by an iterative mesh subdivision and
skeleton.

§1. Introduction

In recent years, there has been a growing interest in using implicit surfaces
for geometric modelling. Especially, the problem of constructing a polygo-
nal approximation of implicit surfaces has received a great deal of attention.
The basic idea of all methods for creating a polyhedral approximation of an
object is an appropriate subdivision of the relevant space. Polygonalization
algorithms typically query the implicit surface through spatial sampling. No
preliminary information about the topology of the object is required, and
only characterisation coordinates of points are used in the reconstruction. An
early polygonalization algorithm for implicit surfaces is described in [2]. It
samples the equation of the implicit surface over a three-dimensional rectan-
gular grid of points and linearly interpolates polygons in regions where the
function values change signs.

Hall-Warren in [4] and Dessarce-Chenin in [3] presented algorithms based
on space subdivision in conjunction with a Bernstein-Bdzier representation.
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The B1zier representation is used to exclude regions which cannot contain
parts of a surface. Therefore, the algorithms are able to detect also small

components which may be not detected by a simple sampling of the defining
polynomial on grid points. Furthermore, due to the sampling, the class of
algorithms may create new components and merge components.

We say that a polygonalization algorithm does not preserve topology if
connected components are not preserved. Finally, we have to propose a nice
definition for topological invariance.

In this paper we develop a topological approach related to digital topology
theory. It is based on sampling in conjunction with the B1zier representation
and a thinning process. The mesh evolution is controlled locally from topo-
logical criteria. As far as we know, no author has explored the use of digital
topology to control the mesh subdivision for approximating an iso-surface.

The basic idea of our method can be expressed as follows: determination
of local criteria for which the voxel set that localizes a given surface has the
same geometry as this surface with topology preservation. The geometry is
related to manifold properties. For a given subdivision level, if the set of voxels
that localize the surface verifies these criteria, we say that the subdivision level
reflects the geometric properties of the surface and it's over. Otherwise, we
adopt an iterative process coupling two phases (subdivision phase and thinning
phase) until the set of voxels represents a digital surface or the upper bound
of the subdivision level is reached.

In Section 2, we develop our motivation to use digital topology in lo-
calization methods. Section 3 provides some useful definitions and notations
related to 3D-digital topology. In Section 4, we establish the link between Dig-
ital and Euclidean topology from the concept of continuous analogous. This
enables us to translate properties of polyhedral manifold to digital space. We
obtain an efficient and local criterion to determine if a set of voxels is a digital
surface. In Section 5, we give criteria for topology preservation and describe
the thinning process, provide a brief description of the global algorithm and
present some experimental results in 2D and 3D.

§2. Mesh Generation

An implicit surface is given by
nk

f(x,y,z) Z E ai1 ,i2 ,i3xI"y12z?3 = 0, where k C {1,2,3} and ai ,i2,i, E R.
ik=O

The surface consists of all real points (x, y, z) that verify the above equation.
A geometric object is considered as a closed subset of R 3 with the definition
f(x, y, z) < 0, and is called a solid. The boundary of such object is a so-called
implicit surface. There is a classification of points in R 3 with respect to the
solid. Let p (X1 y, z) a point of 1R3 . Then

* f(p) < 0, if p is inside the solid,
* f(p) = 0, if p is on the boundary of the solid,
* f(p) > 0, if p is outside the solid.
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(a) (b) (c) (d)

Fig. 1. The topology or the geometry of the initial surface is not preserved.

The classical approach consists of sampling the surface over the three
dimensional rectangular grid, called voxels. The decision of whether a voxel
is intersected by the surface is made by looking at the function values f(p)
at the eight vertices of the voxel. The surface intersects the voxel if not all
signs of these values are equal. Thus, the combination of voxels intersecting
the boundary of the solid provides an approximation of the whole original
surface. Due to the sampling, this approximation cannot always have the
same topology as the original surface (see Figure 1 (a,b)). The sign grid points
criterion may miss information (see Figure 1 (c,d)): a voxel with all vertices
of the same sign can intersect the original surface, but the criterion excludes
this voxel class. Hence in order to preserve information, the criterion must
keep all voxels that intersect the surface. The Bernstein-B6zier representation
allows us to reach this objective.

First, we describe the implicit surface in the Bernstein-Bdzier basis. Let
V = [al, bi] x [a2 , b2] x [aa, b3] be a voxel of the space subdivision. The poly-nk

nomial f(x, y, z) = 1 ai1r,iiX .yi2.0Z3 with (x, y, z) E V, can be written in
ik=O

Bernstein-B6zier basis form as

nk

f(x, y, Z) = b,i2,i Bi (u).Bi2 (v).Si3 (w),

ik=
0

with (U,v,w) E [0,1]3, and B'(x) = Cn.(1 - x)n-1 .x1 . The coefficients biJ,.
in R are the Bernstein-Bdzier ordinates. There is a unique set of Bernstein-
B6zier ordinates associated with each voxel V; we denote it by P.C(V).

Initially, we have one voxel containing the iso-surface. When we subdi-
vide the voxel in the three directions (x, y, z), the associated Bernstein-Bdzier
ordinates set is also subdivided (de-Casteljau subdivision) according to the
three directions and we relate each new control-polygon with its associate
voxel.

Let V be a voxel of the space subdivision. If all the elements of P.C(V)
have the same sign, then by the convex-hull property of the Bernstein-B6zier
polynomial, f has the same sign over the entire voxel V. Three types of voxels
can be found:

1) Outside voxels with Vp E P.C(V), p > 0.
2) Boundary voxels with 3p, q E P.C(V), p.q < 0.
3) Inside voxels with Vp E P.C(V), p < 0.
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From this partition, we can generate two classes of voxels with respect to the
solid, as follows:

"* 1-voxel, which corresponds to a boundary voxel,

"* 0-voxel, which corresponds to outside or inside voxel.

The convex-hull property of the Bernstein-B1zier polynomial implies that a 0-
voxel cannot intersect the surface, but does not assert that a 1-voxel intersects
the surface. So, the approximation cannot always have the same topology as
the original surface (we can create components that do not exist in the original
surface and merge components).

In order to overcome this problem, we develop a topological approach
related to digital topology theory. It consists of representing the space subdi-
vision by a binary three dimensional digital image. The 0-voxel represents a
voxel of the background, and the 1-voxel a voxel of the image object. In order
to avoid having to consider the boundary of the 3-digital image, we assume
that the digital image is unbounded in all directions.

Let A be a centroid-map which associates to each voxel a its barycentre
A(o). A is an one-to-one map between the set of all voxels in R 3 and its
associate digital grid 7Z3 . Points of 2Z3 associated with 1-voxels are called
black points, and those associated with 0-voxel are called white points. The
set of black points normally corresponds to an object in the digital grid.

In the next section we recall the definition of a binary three-dimensional
digital grid.

§3. Basic Notions in 3D-digital Grids

A significant concept in the study of a digital grid is that of neighborhood.
By means of the neighborhood we are able to define "topology" in the digital
space. A point p C 2Z3 is defined by (xi(p))ýi with xj(p) E ZZ. We consider
two types of neighbors of p in the 3D-Digital Grids

3
"* The 6-neighbors: JAV6(p) = {q c 7Z3 : E Ixi(p) - xi(q)l = 1},

i=1
"* The 26-neighbors: AK26(p) = {q c 2Z3 : max (Ixi(p) - xi(q)J) = 1}.

1<i<3

Let /3 c {6, 26} and T C 2Z3 . We say that q is /3-adjacent to p if and only if
q E A/p(p). p is said to be /3-adjacent to T if p is /3-adjacent to some point in
T. Two sets T and W are said to be /3-adjacent to each other if some point
in T is /3-adjacent to some point in W.

A/3-path of length m, m > 0, from p to q in T means a sequence of distinct
points p =P, ... ,Pmo = q of T such that pi is/3-adjacent to Pi+1, 1 < i < m.
Two points p, q E T are /3-connected in T if and only if there exists a /3-path
from p to q in T. The equivalence classes of T under /3-connectivity are called
/3-components of T. A set of points T is called /3-connected if and only if every
two points p, q in T are /3-connected in T.

"• .•fT(p) denotes the set Kr(p) n T.
"* Arf,3,T(p) denotes the set of elements in T that are /3-adjacents to p,
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* T' denotes the complement of T in 2Z3; Tc = 2Z
3 

- T.

We let AK(p) denote the 27 points in the (3,3,3) neighborhood of p. A point
p in T such that AK(p) C T is called an interior point, otherwise p is called
a border point [10].

In this paper, our neighborhood structure corresponds to the (6,26)-
adjacency relation: 6-adjacency for the object and (26)-adjacency for its com-
plement in the digital image.

§4. Continuous Analogs and 2-digital Manifold in 2Z
3

The notion of continuous analogs was introduced in [9] to establish general
properties of binary three dimensional images and used in [8] to give a natural
proof of a theorem on simple surface points.

Generally, this tool permits us to relate digital topology to polyhedral
topology. In [7] we generalize the concept of continuous analogs in all dimen-
sion n, in the context of (2n, 3' - 1)-adjacency, and establish the link between
digital and Euclidean topology.

In the following, we recall some results in three dimension space given
in [7] for all dimension space. Let T be a subset of 2Z3 . We will construct a
polyhedral complex C(T) of T as follows:

"• A 0-cell of C(T) is an element of T,
"* A 1-cell of C(T) is an unit segment whose vertices belong to T,
"* A 2-cell of C(T) is an unit square whose vertices belong to T,
"* A 3-cell of C(T) is an unit cube whose vertices belong to T.

C(T) is a complex, it is called the cubical-complex of T. The underlying
space IC(T)I is called the continuous analog of T in 1R3 . Note that [5] gives
a general method for generating polyhedra from a set of lattice points in 7Z3.
The following theorem expresses the fundamental properties of continuous
analogs. The proof is given in [7].

Theorem 1. Let T be a subset of WZi
3

.

1) IC(T)l n 2Z3 = T,
2) Two elements of T are in the same 6-component of T if and only if they

are in the same component of IC(T)I,
3) Two elements of TC are in the same 26-component of Tc if and only if

they are in the same component of 1R3 
- IC(T)I.

The remainder of this section deals with the relation between a 2D-digital
surface, a 2D-polyhedral manifold and the Jordan-Brouwer Theorem. In 3D
Euclidean space, a simple closed surface is well defined: the neighborhood
of each point in the surface is homeomorphic to an Euclidean disc. The
analog property in digital space consists of caracterizing a 'surface' in 72Z3

by considering its associate continuous analog set.

Morgenthaler and Rosenfeld in [12] have introduced the notion of simple
closed digital surface in order to establish a nontrivial 3D-analog of the 2D-
Jordan curve theorem. They characterized a simple closed digital surface as a
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connected collection of orientable simple surface points. In [8] T.Y. Kong and
A.W. Roscoe reveal what simple surface points 'look like'. In [6], we establish
in all dimensions the relation between n-dimensional digital manifold and n-
dimensional Euclidean manifold. Here, we give only properties related to the
caracterisation of a digital surface. General results and proof are given in [6].

Definition 2. Let T be a subset of 2Z3 and p E T. p is called a simple surface
point of T if

"* .AT (p) admits exactly two 26-components, denoted by Int(p) and Ext(p),
"* Vq E Af6,T(p), q is 6-adjacent to Int(p) and Ext(p).

Definition 3. Let T be a subset ofTZ3 and p E T. T is called a digital surface
if p E T, p is a simple surface point of T.

Theorem 4. Let T be a subset of TZ3.
"• T is a digital surface if and only if IC(T)I is a simple and closed surface

in Ip3.
"• if T is a digital surface, then TC has exactly two 26-components (Int(T)

and Ext(T)), and every element of T is 26-adjacent to these components.

Let T be the set of black points in the digital grid. The notion of simple
surface point gives an efficient and local criterion to determine if T is a digital
surface. This criterion requires only a small number of local operation per
point of T. By translating this characterisation in the voxel space, we obtain
an efficient criterion to determine if a set of voxels represent a digital surface.

§5. Algorithm and Results

For a given subdivision level, the above criterion allows us to test if the set
of 1-voxels represents a digital surface. If it is true, we say that the current
subdivision level reflects the geometric properties of the original surface and
it's over, otherwise our approach consists of two phases.

During the first phase, we subdivide the set of 1-voxels in the three di-
rections and label the new voxels (1-voxel and 0-voxel). During the second
phase, we use a thinning process (remove 0-voxels with topology preservation).
We adopt a sequential thinning process: the border voxels with 0 values are
'peeled off' layer-by-layer with topology preservation. The remaining digi-
tal set, called the skeleton, contains all 1-voxels of the current level and will
contain 0-voxels whose deletion would destroy the current topology.

The second phase permits us to control the topology evolution. We can
merge components of the skeleton's complementary set or create a hole in the
digital image, by removing a specific 0-voxel (if there exists) from the skeleton.
The end step of this phase is to label all the voxels of the skelton to 1 (1-voxel).

Topological thinning is a widely used approach for generating skeletons
from binary objects. It has been shown (see [10,1]) that the topology in a
digital grid will be preserved by a thinning process if the border points that
are removed during each step are simple points. The notion of simple point
is related to topology preservation. A border point is a simple point if and
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only if the Euler number and the number of connected components in its
neighborhood does not change after its removal [10,6,11].

The body of our method, called the treatment phase, is organised in an
iterative way, each step consists of the two phases described above, until the
skeleton represents a digital surface or the upper bound of the subdivision
level is reached.

Input
"* Equation of the Implicit Surface, f(x, y, z),

"* Cuboid containing the surface.

Ouput
9 A set of voxels that localizes the surface with topology and geometry

preservation.

We begin by tranforming f in the Bernstein-B6zier basis related to the Cuboid.
Our algorithm consists of two phases: initialization phase and treatment phase.

During the initialization phase, we extract the components of the ob-
ject and its complement (Interior and Exterior components).

During the treatment phase, we apply iteratively the thinning and
subdivision process until the skeleton represents a digital surface or
the upper bound of the subdivision level is reached.

The subdivision process consists of combining the voxel space subdivision with

control polygon subdivision. The thinning phase proceeds in an iterative way

"* Update the border component of the object,
"* For each border component, remove sequentially 0-voxels that correspond

to a simple point.

We note that this work remains valid for any notion of digital surface satisfying
the Jordan-Brouwer theorem.

5.1 Illustration in 2D case

We consider the following function written in terms of the Bernstein-B6zier
basis:

f(x, y) = 4700 - 40670x - 5000y + 160965x 2 + 5000y 2 - 264750x 3 + 155584x 4

2 4

= ~pijB(x)B4(y).
i=0 j=O

This example illustrates the concept of our approach. If the surface has
no-singularity, our method gives the subdivision level for which the set of 1-
voxels corresponds to a digital surface. The following example illustrates the
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Fig. 2. Initialization phase.

Fig. 3. Treatment phase.

Fig. 4. Initialization and first step of treatment phase.

Fig. 5. Final result.

case where the initial object admits a singularity. Let

f(x, y) = 4 - 32x + 128x 2 - 256x 3 + 288x 4 - 192x 5 + 64x 6

+ 128xy - 320x 2y - 320xy 2 + 384x 3y + 512x 2y 2 + 384xy 3

- 192x 4 y - 384x 3 y 2 - 384x 2 y 3 - 192xy 5 - 32y

+ 128y 2 - 256y 3 + 288y 4 - 192y 5 + 64y 6 .
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Fig. 6. A digital sphere.

5.2 Illustration in 3D case

Figure 6 illustrates the algorithm's application to a sphere given by an implicit
equation. It shows external and internal sights.

§6. Conclusion

In this paper we use a digital topology approach to preserve the topological
coherence between the model (original surface) and its volumetric approxima-
tion. Our method is based on subdivision and a thinning process. We use
local and efficient criteria to determine the nature of the approximation and
to preserve the current topology.
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